© Jamie Allsop 2008

Foundations of Agile Development

¥

Some Questions:

What are the Foundations of Agile Development?
What benefits does Agile Development bring?
S0 how to become Agile?

Reality Check:

Agile Development is not a Silver Bullet

© Jamie Allsop 2008

Overview of Topics

¥

= Typical Development

- And some of its problems
= Agile Development

- Values and Principles

- Users and Stories
- Time-Boxing, Relative Sizing and Progress
- Planning and Adaptability
- User Stories
- Use Cases
= Benefits of Agile Development
= Brief Prescription for Agile Development

= Supporting Tools

© Jamie Allsop 2008

Typical Development

3
= |nputs to development are usually

- Product Requirements Documents from marketing and business
development (new development)

- Ticket Issues from customers (continuing development)

= Product Requirements Documents

— full product specification generated up front -

- used by development to create a Software Requirements
Document

= Transform Requirements Documents into a Development Plan

— develop a Gantt chart and Spreadsheets to provide an estimate of
the work involved, typically covering a full release

— progress measured by Task Completion per Resource

= Ticket Issues generally become deviation points for the plan

© Jamie Allsop 2008

Problems with Typical Development

3
= Here are some, but there are more...
- Progress is measured by Task Completion

 Tasks are hard to trace to business value

 Emphasis is on following a plan
- The Plan is always out-of-date - changing it is heavyweight
 Very difficult to assess where we are NOW il

- Often we can tell if we are late, but it is almost impossible to determine
how late. Our estimate of how late we are only gets better as we get
closer to the Plan deadline. Often too late.

e Difficult to communicate progress to Stakeholders

- Incremental delivery of Product is hard as Tasks are not aligned
with User Value

- Incoming Issues deflect and interrupt the Plan — poor integration

- Emphasis on where we would like to be: not where we are, or
where we could be. Basically “wishful planning”

© Jamie Allsop 2008

What is Agile Development?

=

= Agile Development is development that supports the Agile Value
System

= The Agile Value System is based on a set of Agile Principles

= |n essence Agile Development seeks to cope Deterministically
with Change

Progress is measured against business value delivered to the -
customer

Change is welcomed as a sign of better understanding of the
business need

Effort is only spent as needed to deliver business value -
minimising effort wastage in the face of change

Past observed progress is used to predict future progress

= Emphasis is on delivering Business Value in a sustainable way

© Jamie Allsop 2008

Agile Value Systém

Left valued more than Right

= |ndividuals and interactions
— over processes and tools

= \Working software
— over comprehensive documentation

= Customer Collaboration
— over contract negotiation

= Responding to change

- over following a plan

© Jamie Allsop 2008

Agile Principles
3
= The Value System is based on the following principles:

- Early and continuous delivery of valuable software
- Welcome changing requirements
— Deliver working software frequently

— Business people and developers work together

— Trust motivated individuals

- Working software is the primary measure of progress
- Promote sustainable development

— Technical excellence and good design

- Simplicity is essential

- Self-organising teams

- Team reflection and adjustment

© Jamie Allsop 2008

Who is the Customer?

=

= Basically anyone who is a stakeholder in the project who will
use the project

- The development team itself can be a Product Support customer

= |deally there will be a representative cross-section of real
customers

- ldentifying actual customers is not always possible -

- In some cases we must use customer proxies from business
development, marketing, sales, support and QA

- Sometimes we need several customer proxies to represent
different customer classes

= Customers and Users are generally the same

- Typically the term customer is used in the broader sense to
represent stakeholders who will be charged for using the system

© Jamie Allsop 2008

In Agile Development the Product is

Described'as User Stories

User Stories are akin to Features and describe the System from
the user’s perspective

Capture Functional and Non-Functional requirements
uniformly

User Stories are Sized Relatively T
using a fixed, non-linear scale: _
1, 3, 5, 8, 13, 20, 40, 100 AUt

Dependencies are noted |4 ssen

Admin I can add

As System
Admin Ican ...

User Stories typically
have an End User who As End User |

consumes an interaction [} B Ueer |
from the system }

As End User 1 }

Customer can understand {canedit---

As End User 1 }

U ser Sto rl es Darker stories are larger

© Jamie Allsop 2008

ldentify a Finite, but evolvin“g, set of End

lgsers

= Careful identification of User classes is an important skill
requiring stakeholder input

= A shared understanding of the who the Users of a system are is
central to communicating effectively the User Stories with the
Customer.

= Some typical users are
- SystemAdmin
- SecurityAdmin
- EndUser
- ProductSupport

= As understanding of a product improves User classes can be
split or refined as appropriate

= Some End Users will have very specific business domain roles

© Jamie Allsop 2008

Sample Users

|3
= Here is a table of users identified for a real system

- You can start with EndUser then split off and add more specialised
types of user, eventually relegating EndUser to a non-priveleged
user

- |In some cases the system will be a valid user

Endlser typical, non-privileged user

MmsSystem the system itself

Securitysdmin ||user that can assign permissions and roles to other users and track their actions

SourceAdmin user that can configure sources

SystemaAdmin ||user that can install the product

Umallser User that accesses NMS only through UMA
Lmaddmin User that configues our interface to UMA
ViewAdmin user that can create objects and views and share them with others

ProductSupport|[User that needs to support the NMS solution

odbclser User that needs access NMS data directly from the Database e.g. using Safari

MmsDoc This user is tasked with documenting the NMS System

CrillDownlUser ||User that accesses the mainframe wvia Drill down from MIS

© Jamie Allsop 2008

Work in Fixed, Time-Boxed

Development Cycles

= One or more User Stories are developed in each iteration
= Frequent delivery

- 1-4 weeK lterations, 1-4 Iterations per Milestone.

- 1-4 Milestones per GA Release

= Time-boxed development
- lterations last a predefined length of time
- Team concentrates on iteration goals — the selected User Stories
— Team observes development rate based on Story completion
- Allows computation of effort needed for remaining Stories

= Focus mainly on the next most important thing

- From the customer’s perspective

© Jamie Allsop 2008

Plan to Provide Value

3
= Plan to deliver business features — the User Stories

- Accomplishment means integration, test and documentation

— QA can be done on a per-Story basis

= The Customer is involved in Planning and Evaluating every
lteration

= Plan at different levels — and update continuously -
- Release planning — between every iteration
- lteration planning — for each iteration
- Dally Planning — daily synchronisation in a short stand-up
= Detailed planning only for the next steps
— Typically the next iteration

= Each iteration finishes with working software

© Jamie Allsop 2008

Measuring Progress and Time

¥

We use the Relative Size of each User Story to derive
estimates for duration.

This is based on Observed progress during iterations.

- How any points worth of User Stories are we likely to complete in
an iteration

The Release Plans can be continually updated. »

Different planning levels have different levels of confidence.
- Estimates for completion of larger milestones have greater error

Cone of uncertainty 160 %
Estimates should be \
100 %

provided as a
Date Range. |
50 % Knowledge, Iterations Observec;'

© Jamie Allsop 2008

Different Levels of Planning

=

Product is composed of Releases

(=

Milestone 1 Milestone 2 is GA Release 1 Milestone 3
Strategy
8} Portfolio B
% Product
\) .
lteration 1| Iteration 2| Iteration 3| Iteration 4| = | Release
R ey | Iteration
Task Time
i Design X 1 hour i Task Active Done
| Implement X 4 hours i Design X X X
i Implement Y 24 hours : Implement X O O
i Meetings 1 hour i ImplerpentY & D ' . . '
i Automate Tests 16 hours l : The Plannl_ng Onlon ShOWS
how the different levels of

planning are layered

© Jamie Allsop 2008

Understanding Progress

=

lterations deliver User Stories — product value increases
incrementally

- Release Progress is measured by User Stories Completed
- Progress within an Iteration is measured by Task Completion

* Purpose is to detect extreme deviations or critical problems
Focus iIs on
- What Still Needs to be Done, not time passed

— Continually updating our plans to reflect what is currently the Most
Important Value for the Customer

 not protecting our original plan against change
Release Progress is known accurately on each iteration

Visibility on Progress is known NOW

Direction of Focus can change each lteration

© Jamie Allsop 2008

Agile Methodologies Themselves Adapt

= Each iteration we ask the customer how we are doing

= Each Iteration we evaluate how things are going

- lteration Retrospectives are a vital feedback loop in an Agile
methodology and should never be skipped

= \We can feedback useful changes into the next iteration

= Changes should be given time to evaluate their effect on the -
methodology

= Typically only make one change per iteration
= Try to allow each change at least 3 iterations to evaluate it fairly

— Otherwise you risk oscillating

© Jamie Allsop 2008

Elements of an Agile Methodology

¥

= Start
- New Products

* |ncubate the ldeas
* |nitiate the First Set of User Stories and Milestones

— Existing Products

« Consolidate an Initial Set of Stories for a couple of Iterations =
= |terate in Fixed Time Boxes

- lteration Planning — Choose User Stories

- lteration Development — Complete User Stories
- lteration Evaluation — Update User Stories

- Release Planning — Update Milestones

= Measure User Story Completion per lteration to estimate future
progress

START

ITERATE

INCUBATION ITERATION
Idea/Opportunity. Taskiie DEVELOPMENT PLANNED
Key Problems to Solve. N GA RELEASE
User Needs
: NO
Market Analysis. \’)A o

Product and Loss Analysis. Cust Customer Team O)}“, °

Business Constraints. L,'s omer and Team Team identifies | | Task List| Write Tests :

Prioritises . : Working
. refine updates Tasks from | : Code
595 K Stories for .) : Release
727 weeks . Stories to overall Stories and | : Refactor
Tteration. Team . ‘
estimates if Use Cases technical Use Cases. | iygs User Doc
. and Test architecture. Can E Acceptance Tests Software
INITIATION fhey can commit. Cases. commit? e
.Inmal User Story Customer, Team 15 days/hours Use Test Customer and Team
list generated from Cases Cases review release
. and other -
Customers with
Stakeholders

Team and other
Stakeholder help.
Identify
Dependencies.
Relatively Size
User Stories.

scope first GA

release based on
initial User Stories

Prioritised into
Milestone Buckets.

1 week

1 week

Tacit
Knowledge

Shared
Relatively Sized Vision

User Stories

Story 12
oy

ITERATION EVALUATION

Iteration
RETROSPECTIVE.
Evaluate Methodology
and update or change
as appropriate.

Customer and Team update User
Stories: Add new Stories; Split Large
Stories; Re-open Existing Stories.
Update Milestones and Priorities.
Calculate Milestone Time Estimates.

Stakeholders
update
overall

marketing
architecture.

1-2 days/1-4 hours

1-2 days/1-4 hours

1-2_days/hours

User Stories .' Issues

GA ITERATION EVALUATION

1-2 days/hours

Story 4

Story 14

Customer, Team and
Stakeholders scope
next GA release.
Update Milestones.
Calculate Times.

GA Release
RETROSPECTIVE.
Evaluation of lessons
learned. Feedback
changes to methodology.

Customer and Team update User
Stories: Add new Stories; Split Large
Stories; Re-open Existing Stories.
Update Milestones and Priorities.
Calculate Milestone Time Estimates.

Stakeholders
update
overall

marketing
architecture.

1-3 days

1-2 days

—

1-2 days

User Stories / .'

G Cvadl (na) oos (o) Eiiaed

S

Issues | I.

No | Planned
GA
Release. Is b
it ready?
YES
GA Release
o
Software GA
& Doc Notes

s ston))

© Jamie Allsop 2008

lteration Planning

3

= Adopt a workflow with development entry criteria to help guide
the planning, for example:

ITERATION PLANNING

Task List|

[User Stories P’

Customer Team
Customer . r
. and Team identifies
Prioritises : Team updates
i refine Tasks from
Stories for . overall . :
: . Stories to) Stories and |
i | Tteration. Team technical ' VES
g estimates if the Use Cases hitect Use Cases. :
can commit ’ * and Test T Can | i e
| ' Cases. commit? DEVELOPMENT
-- Use
Cases

= Use evolving templates to help drive meetings and the expected

outcomes
- Wiki pages are great for this

© Jamie Allsop 2008

lteration Evaluation

¥

= As with iteration planning have a workflow to help guide the
evaluation phase

ITERATION Working
DEVELOPMENT Release

Software
ITERATION EVALUATION -
Iteration Customer and Team update User Stakeholders Cus‘ro.rner' ar:d Team o
RETROSPECTIVE. Stories: Add new Stories; Split Large undate overall review release.
Evaluate Methodology Stories; Re-open Existing Stories. P . 1:2 hours
. . marketing

and update or change Update Milestones and Priorities. architecture

as appropriate. Calculate Milestone Time Estimates. '
1-4 hours 1-4 hours 1-2 hours

[User STor'iesﬂ

O =

© Jamie Allsop 2008

The Release Plan is the Roadmap

= Estimated completion date is a Calculated Date Range

= Estimates change as stories are completed, time progresses
and the rate of completion changes

NMS Milestones Roadmap

UPDATED ON Mon 20-Aug-2007: Based on 27.3 points per iteration, 3 weeks per iteration

Milestone Summary

Points | Total Estimated
MileStone Progress d
To Do | Size Completion Date
UmaPmolemo COMPLETED DONE
DexiaBankDemao 13 M A 103 COMPLETED DONE
MmsUmaPmoMARelease 4n MR 219 COMPLETED ONE

D
. Mon 14-Apr-2008
-=Mon 25-Aug-2008

. Mon 4-Aug-2008
MisReleasel Pt1ValueAdded 15 100 100
-=Mon 15-5ep-2008

Mon 22-Dec-2008

MisReleaselPt1Bling 9 200 200
-> Mon 23-Mar-2009

Mon 23-Mar-2009
MearTerm 27 103 200 48%0
-»>Mon 11-May-2009

L T o o S Mon 23-Nowv-2009
ongTerm
-= Mon 5-Apr-2010

Jamie Allsop 2008

Story Points per lteration is based on a

Moving Average

= |t is possible to use more than one average to offer both long
and short terms estimates of progress

Development
Retro-
Points Stories Completed i Phase
spective
KT
(] 26 26.00 EMSUserStory4ptl NMSUserStory27pté NMSUserStory65pta (] 2006-05-17 2006-05-31
7 32 29.00 @EMSUserStory4pt? NMSUserStory65ptll NMSUserStory65ptls WMSUserStoryG5ptl4 7 2006-06-07 2006-06-21
B 24 27.33 PMsUserStoryl0pt9 NMSUserStory5eptl NMSUsersStoryasptl? B8 2006-06-29 2006-07-13
9 =0 33.00 EMSUserStory56ptl NMSUserStory10pt2 NMSUserStory10ptl0 NMSUserStoryl10pt8 NMSUserStoryS56pt2 9 2006-07-24 2006-08-11 d
10 24 31.20 PMSUserStory4ptll NMSUserStory10ptil NMSUSerStDrySSptEE NMSUserStory71ptl 10 2006-09-21 2006-10-04
11 29 30.83 PMSUserStory10pt3 NMSUserStory10pt127 NMSUserStory4pt12 NMSUserStory8pts NMSUserStory23ptl 11 2006-10-19 2006-11-02
12 0 26.42 12 2006-11-10 2006-11-27 N
13 13 24.75 PMSUserStory4pt3 NMSUSerStory4pt27. 13 2006-12-11 2006-12-22
14 11 23.22 @MSUserStoryept4 NMSUSertStDry4ptl43 14 2007-01-09 2007-01-22
MSUserstory4pt28 NMMSUsersStory4pt29 NMSUserStory28ptl7 MMSUserStory2B8ptl19 NMSUserStory71pt2
15 39 24.8 o 15 2007-02-06 2007-02-19
MSUserStory71pt3’
16 39 26.1 MSUserStory4pt? NMSUserStory27ptl MMSUserStory51pt2 NMSUserStory68ptl 16 2007-03-03 2007-03-16
17a 34 | 26.75 EMSUserStory4pt36 NMSUserStory5ept4’ NMSUserStory73pt2 NMSUserStory73pt3) NMSUserStory73pt4’ 17a’ 2007-03-23 2007-04-05
MSUserStory4pt19 NMSUserStDr\;EEpEE NMSUserStory50pt3 NMSUserStDryEDptSE NMSUserStory50pt9 @
17b 24 27,31 B 17b’ 2007-04-06 2007-04-19
MSUserStoryS51pts NMSUserStory73pt11°

d

1R° KMSI IserStare1nt1? NMS!lsarStarelntd’ MMSI lsarStare T IntA° 1R° 2007-04-34 2007-05-07

Jamie Allsop 2008

Milestones are Composed of Stories

= Not all milestones are GA Releases
= Using Named Milestones makes it easy to insert new ones

Milestone UmaPmoDemo 26 Points COMPLETED

100%:

Toagale User Stories

Milestone DexiaBankDemo 103 Points COMPLETED

100 %

Togale User Stories d

Milestone NmsUmaPmoMARelease 219 Points COMPLETED

10095

Togale User Stories

Milestone NisRelease1Pt1 498 Points

33%

Toggle User Stories

Size completed by team : 168 points
+ Points Remaining: 330 pts (~ 12.09 iterations @ 27.3 pts/iteration)
+ Estimated weeks remaining: 31 to 50 weeks.

Need
Refined Unrefined . Test Doc Acceptance
Title TCOM and
User Story User Story Complete QA? Complete Complete

SystemAdmin should be able to enjoy an AWESOME automated install on
Windows 2000, XP, 2003.

SystemAdmin will be given the option of installing an external 1DK if a suitable DK is not

004pt35 004 found NisReleaselPtl & Yes . .
ound.

004pt38 004 SystemaAdmin will be able to upgrade NIS without having to uninstall. MisReleaselPtl 8 Yes . .

Jamie Allsop 20

Story Completion provides an

Immediate Indicator of Progress

Milestone NisRelease1Pt1 498 Points

Togale User Stories

#+ Size completed by team : 168 points
+ Points Remaining: 330 pts { ~ 12.09 iterations @ 27.3 pts/iteration)
+ Estimated weeks remaining: 31 to 50 weeks,

Refined User | Unrefined User Titl Test Need TCOM Doc Acceptance
itle
Story Story Complete and QA? Complete Complete

010 NMS will evaluate exceptions on a continuous basis in the background. There should be no need to run, and attach, a client.
010pt4 oio SystemAdmin can define active exception timeout (ones not killed by a TMON) NisReleaselPtl 1 Yes . .
010pt5 010 SystemAdmin can define in-active exception lifetime MisReleaselPtl 1 Yes . .
EndUser will observe that the TmonException state is updated on a timed basis regardless of whether or not new TmonExceptions are being received from .
010pt13 010 . . q NisReleaselPtl 5 Yes . .
the host, that is, TmonException states will age as expected.
GEG EndUser must be able to drilldown from a monitored object, or a report running against a monitored object to either, another monitored
object, another report or a relevant TMON.
o Umalser needs drilldown data from a monitored object {i.e. AFFLID) or something to define where to drilldown to. Ensure NIS can identify and persist .
026pt27 026 . . NisReleaselPtl 13 . No
necessary data, for each TMON, to facilitate drilldown. ‘
026pt37 026 Umalser and OdbcUser needs access to a URL to facilitate the drilldown NisReleaselPtl 8 . No
0Z6ptd 026 DrillDownUser needs to be validated against the mainframe user database NisReleaselPtl 8 . No
026pt5 026 EndUser must be able to drilldown from TMON exceptions NisReleaselPtl 5 . No
026pte’ 026 OdbcUser must be able to drilldown from Time Series Data (i.e. APPLID) MisReleaselPtl 13 . No
GFE SourceAdmin should have the ability, within the context of this product, to report on sources [aggregate instances] available to the %
product.
027ptl 027 SourceAdmin can view an up-to-date list of sources MisReleaselPtl 13 . Yes . .
027pts 027 EndUser will observe that the NIS Server will update the Source state at regular intervals so that even if no Sources are received state remains current. MisReleaseiPti 5 Yes . .
027ptl0 027 SourceAdmin will expect Source state to update dynamically in the user interface NisReleaselPtl 8 . Yes . .
028 SourceAdmin can configure which sources are collectable.
028ptl 028 The SourceAdmin can mark sources (aggregate instances) collectible (i.e. making query target more specific). MisReleaseiPtl 13 . Yes . .
028ptl3 0zg ProductSupport will have access to an initial set of sensible default collection rules for each agaregate MisReleaselPtl 13 . No
0Z8ptid oz28 SourceAdmin will have access to pre-configured default collection rules NisReleaselPtl 13 . Yes . .
028ptls 028 SourceAdmin needs to be able to view a list of aggregates for a given tmon product instance MisReleaseiPtl B . Yes . .
028ptle 0zg SourceAdmin can change the collectability attribute of an aggregate (which has default collectable element list) MisReleaselPtl 8 . Yes . .
028ptl7 028 FroductSupport can view the results of a TMON LFS TimeSeries query for a specified TMON Froduct LFS Time Series Aggregate in the log file MisReleaselPtl B No
0z8ptle 028 OdbcUser can view the contents of a TMON LFS TimeSeries agaregate in the database for a specified TMON Product LFS Time Series Aggregate MisReleaseiPtl 13 . Yes . .
028ptl9 0zg TmonDevz can validate TimeSeries representation in the NMS Schema MisReleaselPtl 13 No
028pt20 028 Odbclser can view the contents of any TMON LFS TimeSeries aggregate that is found in the NMS Schema validated in NMSUserStory2&ptia MisReleaselPtl 13 . No
N?Ant?1 n2a Adhcllzar fan avnect a consistent manning hetwaan TMON | FS TimeSeries Flamant Tunes and NMS Natahase Tunes MisR eleasalptl 13 | Nn

© Jamie Allsop 2008

User Story Relative Sizing Revisited

¥

= User Stories are Sized Relatively using a fixed non-linear scale,

for example,
1,3, 5, 8, 13, 20, 40, 100

= Only User Stories below a certain relative size may be added to
an iteration,

- For a 2 week iteration we might allow, 1, 3, 5, 8, 13

- For a 1 week iteration we might allow, 1, 3, 5

= Stories larger than this must be split into 2 or more smaller
Stories.

= Splitting Stories is not so easy as it requires careful thought.
= A important side-effect is a better understanding.

© Jamie Allsop 2008

Recap: Split User Stories to fit in an

Iteration
|3
= This ensures we always focus on customer value
- Customers get slices of the cake, not a selection of the

Ingredients
- Remember User Stories grouped into Milestones is the Release
Plan
Story Driven Release planning 30% done Task Driven Release planning =
30% done
S1 S2 S3 esome components missing

o[ittle user value

D
®®

© Jamie Allsop 2008

User Story Relative Sizing Revisited

Again

= Sizing is Relative (that is Comparative to other Stories)

- Relative sizing can be anchored mentally using time or simple
descriptive terms

= The only important consideration is that the Relative anchoring
of size remains consistent.

= |n general people give consistent appraisals of Relative Size. »
— This helps protect against ‘compensated' estimates

- Let the Points per Iteration adjust the expected development rate,
not some artificially modified estimate

= The fixed, finite element, sizing scale helps maintain
consistency and reduces the temptation to try to estimate sizing
more accurately than is possible.

- Larger Stories are given a larger variation in size.

© Jamie Allsop 2008

User Story Relative Sizing Anchors

.

= Typical Relative size mental anchors that can help describe the
relative size of a User Story

CIE)Y Describtion Time
Point Size P (be careful with this one!)

100 Gargantuan/Elephantine More than a quarter
40 Massive/Colossal Up to a quarter -
20 Huge less than a month
13 Large Less than 2 weeks
8 Medium More than a week
5 Modest Less than a week
3 Small 2 or 3 days of work

1 Tiny Less than a day

© Jamie Allsop 2008

Understanding Progress of a User Story

— Done or Not Done?

= Stories can be either NOT DONE
— Not Yet Assigned for Completion
- Candidate for Completion in this Iteration
- Selected for Completion in this Iteration
= or DONE (Done Done, REALLY Done)
= A Story is DONE when either,

- It is Test Complete (there is no relevant doc or use case change
so a tested implementation is sufficient to be DONE), or,

- It is Acceptance Complete (test cases all pass, documentation is
available, and business value has been verified)

= Only DONE Stories contribute to Milestone progress

© Jamie Allsop 2008

User Story Completion States that

identify when a Story is DONE

= A Story is either:
- Test Complete (might mean DONE)

« An implementation and associated tests have been developed for
the story

- Doc Complete

* Where appropriate User Documentation has been completed to
describe the Story for the User. If Doc is required Acceptance
Completion is almost always needed.

- Acceptance Complete (might mean DONE)

e The Story is assessed as DONE or not, based on the
implementation tests, User Documentation, Test Cases (derived from
the Use Cases) and Story notes, especially the completion
statement. This typically done by QA.

© Jamie Allsop 2008

User Story Detail Grows as it becomes

a priority: Initially Not Started
= AKkey principle of Agile Development is to not pay for what you

don't use

= \When User Stories are first identified they generally consist of
only the Story itself, Relative Size and Dependency notes

= As User Story priority increases we spend more effort
elaborating them — lightweight in the beginning

= \We are as lightweight as we can be for as long as we can be

28.18 - OdbcUser can view the contents of a TMON LFS TimeSeries aggregate in the database for a
specified TMON Product LFS Time Series Aggregate.

Relative Size = 13

General Notes, Discussion and Background Information

* What it means to be done
o Get one Ifs record into the repository

+ Design first effort Schema for LFS TimeSeries data
+ Dynamically detect presence of LFS TimeSeries Aggreagate table in database
o and Dynamically create table for LFS TimeSeries data if not exists
+ Add Persistance to the LFS TimeSeries Report class (update persistance manager)
+ Persist LFS TimeSeries data to the database

© Jamie Allsop 2008

User Story Info: lteration Candidate

¢

= Pre-lteration Detalls:
- Completion Statement
- Clarifying Use Cases (optional)
— Additional Context (optional)

lteration 20

Pre-lteration
: Completion Statement |

iComplete when we can persist at least one row of a specific LFS Time Series aggregate to the database with some of the fields of an appropriate type (other than as strings). |

: Clarifying Use Cases?

i lUse Case Number Description

: NMSUseCaseOOE NMSUseCaseODDescriptiunz

. i Edit] :

| Additional Context? |

' IMPORTANT: Being able to complete this story will push the limits of the database library we use to the extent that we may discover during this iteration that it is not possible

i to achieve this without writing extra code. This may be code to extend the current library, or we may need to look at using an alternative (one has already been identified, !
 however it does not have a native Postgresgl backend and that would need to be written).

This story was previously completed by hard-coding some of the type conversions and building a static SQL statement to identify the elements needing to be persisted for the
aggregate. The intention is to attempt this by dynamically building a SQL statement. One time series aggregate will be specified as the test aggregate and a first effort at
persisting this will be made. It should be possible then to view at least one row of this aggregate in the database on completion of this story.

Jamie Allsop 2

User Story Info: Current lteration

¢

= |teration Development:
— Task List (as required)
- Notes (as required)

Iteration Development

Task List
Task Number Task Effort Estimate (hrs)
0000 Task0000Description|00

(=4 Edit |

Notes

The goals of the user story were to persist rows of a specific single Ifs aggregate where each row comprised elements of the correct type (from the DMAP)., We chose (and
hard-coded) was TMONMVYS.SYMAIN.040, Previously we had already shown that we could request data for this aggregate and persist it to the database, however previously we
used a partially hard-coded insert statement and only persisted the elements as string types.

The work carried out this iteration has mowved this forward significantly and all the technical issues with dynamically building a suitable insert statement, as well as the problems
with having that statement reference data of varying types, have been addressed with appropriate solutions,

What remains then is the type mapping between the types present in SYMAIN and the types that we will use to represent those in the database.
This involves two steps:

1. To map the database type to the element based on the Input Format, Units, Size and Scale of the element (as determined from the DMAP), This first step is largely
complete and a mapping function has been written.

(5]

. This (more complex) step involves the actual conversion of the element value to the appropriate type based on the Input Format, Units, Size and Scale. Mostly this code
will be lifted from NaviPlex however there are some differences that must be addressed and that is where the extra complexity lies. It is also possible that we may see
elements whose descriptions are not the same as the descriptions previously seen in Real-time aggregates in NaviPlex.

We don't think that there is much more to do to make this work for the SYMAIN aggregate, around 3 days of work., Without the Cellco interruption this would likely have been
complete this iteration,

Remember this user story focuses only on SYMAIN and only on the ability to persist elements to the database using a sensible type. It does not cover all possible type mappings
(another story addresses this), though certainly the main type conversions will be covered; nor does it address the ability to perform continual, planned collections of LFS data
using the store-clock values to help generate follow-on report requests. As such we simply use a hard-coded WHERE LMRKCLK LT *3X clause (or a WHERE LMRKCLK GT 0).

© Jamie Allsop 2008

User Story Info: DONE

.

= Post-Iteration Details:
— Completion Details (Addition TCOM and QA notes)

= Emphasis is on providing only as much information as required
to allow adequate verification of completion

———

Post-lteration

Completion Details (Additional TCOM/QA Notes)

' The goals of the user story were to persist rows of a specific single Ifs aggregate (TMONMYS. SYMAIN.040) where each row comprised elements of the correct type (from the
i DMAP). Previously we had already shown that we could request data for this aggregate and persist it to the database, however previously we used a partially hard-coded insert |
i statement and only persisted the elements as string types.

This iteration has moved this forward significantly and all the technical issues with dynamically building a suitable SQL INSERT statement, as well as the problems with having
i that statement reference data of varying types. What remains is the type mapping between the types present in SYMAIN and the types that we will use to represent those in
i the database, which involves two steps:

1. To map the database type to the element based on the Input Format, Units, Size and Scale of the element (as determined from the DMAP). This first step is largely '
complete and a mapping function has been written.
. This {more complex) step involves the actual conversion of the element value to the appropriate type based on the Input Format, Units, Size and Scale. This code will
: largely be lifted from MaviPlex, however there are some differences that must be addressed (data for display vs. data for a database), and we also may see time-series
elements whose descriptions were not in the realm of descriptions that NaviPlex is capable of handling. :

]

i The remaining work will need to be continued in a future iteration.

© Jamie Allsop 2008

The relationship between User Stories

and gse Cases

= Use Cases compliment User Stories
- A Use Case documents a Goal driven Functional Scenario
- A User Story typically identifies one step in a Scenario

- A User Story can also identify a non-functional constraint on a
system from a User perspective

= |n addition to the Main Success Scenario a Use Case usually -
identifies one or more failure scenarios

— provides a good foundation for Test Cases
— provides the context in which a User Story is enacted
= Use Cases and User Stories are loosely coupled
— A Use Case can provide the context for several User Stories

- A User Story can imply several Use Cases

© Jamie Allsop 2008

Functional and Non-FunC;cionaI User

§tories

= Functional User Stories typically describe something a User can
do

= Non-Functional User Stories typically describe something a
User will experience

- Predictable scalability
- Predictable stability »
— Other 'ilities

- Often these are User-centric ways of capturing constraints on the
system

- Sometimes the System itself will be a User

= Emphasis is on which User will benefit from the non-functional
requirement, or which User is most affected by the constraint

© Jamie Allsop 2008

Elements of a Use Case

=

= A Use Case is a textual artifact that specifically examines one or
more scenarios from a User's perspective in the User's attempt
to accomplish some specified goal.

= A Use Case
— Exists in a certain Design Scope

- |Is enacted by the identified User -
- The User is trying to achieve a Goal

- To achieve the Goal the User must complete a Main Success
Scenario

— Certain Pre-Conditions may be required before starting

- Completion of the scenario may have Guarantees

- There may be extension scenarios for deviations

© Jamie Allsop 2008

A Use Case Template

USE CASE ## Design Scope Icgn USE CASE NAME [Goal Level Icon

.

Goal in Context < a longer statement of the goal, if needed, its normal occurrence conditions >

T h e te m pl ate S h Own iS a Scope < design scope, what system is being considered black-box under design >

Level < user goal lavel =

CO m p ro m ISe betwee n b reVIty Primary Actor < a role name for the primary actor, or description >
a n d Va I u e Stakeholders & Interests < fist of stakeholders and key interests in the use case >

Preconditions < what we expect Is already the state of the world >

Minimal Guarantee < how the interests are protected under all exits >

The Use Case Summary Title ... e - s orom vt son ssecenss -
(U S E CAS E NAM E) Ca ptu reS Trigger < what starts the use case, may be time event >
the essence of the Use Case ™" ™"

1 First step

The Main Success Scenario | >~

3 Third step

will have at least 2 steps but
not too many (say 3 to 10) ecomtononumee

*al. Action 1 with link”

Extensions refer to specific ===

2al. Action on step

StepS in the Main SUCCGSS 2ala Condition on action
S Ce n a ri O Last action depth - deeper than this needs it's own use case

2b. Second condition on same step

2b1. Action

— More than four levels deep ... e
h e re i m p I ieS a n Oth e r U Se Technology & Data Variations
Case 1. The specified item can be:

*item 1

© Jamie Allsop 2008

Choose a Use Case Template and use

it consistently

= Scope and Level are x{ Seose | am— 1)
Important so are also
represented with icons for o
quick browsing e
= The Primary Actor will be one ecandtons
of our previously identified
users, bridging the gap T -
between User Stories and
Use Cases "
= Technology and Data
Variations are used to detail
'how' something is different
- Extensions capture 'what' is :
different from the Main Commants
Success Scenario

© Jamie Allsop 2008

Use Cases have a Design Scope

=
= |dentifying a design scope helps remove ambiguity

- Business Use Cases for the Organisation/Enterprise
« \We are discussing the behaviour of the entire organization or
enterprise in delivering the goal of the primary actor

- Black box if we are treating the organisation as a black box
- White box if we are discussing departments

_ System .

ﬁ] organization (black-box)

* We are discussing the behaviour of the system
we are building

— Black box if we treat the system as a black box [%T SERIEE TR | et
- White box if we reveal details of the internals =

- Sub-system

System (black-box)

System (white-box)

* We are discussing a sub-system or component
of the system we are building

(@ component

© Jamie Allsop 2008

Use Cases have a User Goal Level

3
= Every Use Case has a User Goal Level

- We identify 5 goal levels for Use Cases

= Higher level goals can be unfolded or split into one or more
lower level goals

- Higher level goals provide context for lower

level ones -

= User Level Goals are the most important and
most energy should be spent trying to detect
these use cases 5 | Elm—

Wery high summary

- Subfunction Goals should only be added if they = “@e vsercea
are needed to remove ambiguity pY

4 Subfunction

= The Goal Level icons use a Sky-Sealevel-Sea & ..
metaphor to illustrate that most use cases will
appear at sea level. There is only one sea level.

© Jamie Allsop 2008

Use Case Goal Levels: Pictorially

.

= Use Case goals levels reflect the different usage levels in a

system

Overall Project

Invipice

Summary .
Goals - =4

Order
- Ty
W N £
/ o
V. N / \
I ._
c \ 5
i R Y ¥ 1
Set up ' Reference Mon itor Place | Create
Promation] Promotion | Promotion Crder flnvnica

Identify Register |dentify Identify Sub-
Promotion User Product Customer functions

Send User WY
Invoice Goals — i T

© Jamie Allsop 2008

Use Case Goal Levels: Emphasis
changes as level changes

= Higher level goals address Why, lower level goals address How

- To move down a level ask How?
- To move up a level ask Why?

Goal of Use ("a.\'r‘

Summary
Goals

=

Goal of Use (“ase User

Goals ——

. 3
N
%
W,
b
%
%,

X

| Goal of Steps

functions

© Jamie Allsop 2008

Use Cases are Ul Agnostic

¥

= Emphasis is on WHAT is achieved, not the mechanics of HOW
it is achieved

= User Documentation describes the 'how'
= Test Cases for User Interactions can be written in two phases

— First phase ensures the Use Case path is clear
— Second phase adds details based on User Doc -

= Acceptance tests can validate both the Ul and the User
Documentation independently

= Use Cases are therefore very useful when used to capture
complex User Interactions

© Jamie Allsop 2008

Use Case Summary and Sample

t USE CASE 201 ﬁ The user needs to be able to configure initial host(s) G

(=4 Edit |

. The Use Case Clearly and Goal in Context The user needs to be able to configure initial host(s)
succinctly provides an

Level User-Goal

iInteraction capability promise rimarpactor [E—

Stakeholders 8 Interests System Administrator, NMS Administrator, NMS

- P recon d itions a n d Preconditions Install must be in progress
G u a r’a ntees a re i m por‘ta nt Minimal Guarantee System Administrator gets a message

Success Guarantees Host(s) get configured
— The Mai n S uccess Scenario Trigger System Administrator selects to configure the host(s) during the install
(=4 Edit | ol

IS not overly long

Main Success Scenario

1 Sys Admin elects to configure an initial host

B There iS no U I info rmation 2 Sys admin enters Host Information (repeatable)

- There Shou Id nlt be. SUCh 3 Sys admin submits Host Information(may return to step 3)

4 Success message sent to sys admin; install continues.

detail depends on the el
implementation Extensions

Th E t . b edit 3a Host already entered
0 e X enSIOnS Can e edit 3al. Message to admin, return to 3 or continue.
|mp|emented and tested 0 | <1 T e T
edit 3b1. Send message; Return to 3
separately | |
edit 3ec. Unable to add Host Information

edit

= Use Cases are lteration tools ..

3cl. Message to Admin

i’

© Jamie Allsop 2008

Benefit: Roadmap and Progress

Reporting are Side-Effects

= |n a typical waterfall development scenario the artifacts that are
used to estimate and track progress are generated explicitly

— Conscious effort is required to produce these
— Conscious effort is required keep these up-to-date

- Often the overhead is so large one person in the team ends up
doing this work almost exclusively

- If all of the above is overcome the accuracy of the data is poor
and largely based on intuition

= |n Agile these artifacts are generated automatically as a side-
effect of the methodology

- The data produced is as accurate as it can be, as it is based on
known current progress and observed previous progress

© Jamie Allsop 2008

Benefit: It is possible to 'tfy‘ different

scenarios to upderstand the effect

= Expected progress is based on observed progress. We can
therefore experiment with alternate Roadmaps to see the
expected progress for each

= |t is also possible to create artificial scenarios that may impact
the Roadmap and observe the effect they may have

- For example estimate the effect of an increased support workload
by modifying the rate of story point completion

= Stakeholders can therefore make considered decisions
regarding possible Roadmap variations

© Jamie Allsop 2008

Benefit: The Time Esti“mate IS

decoupled fronl the Effort Estimate

= Estimates of completion time is calculated based on observed
progress, not directly from developers' time estimates

- Developers are no longer under pressure to give overly optimistic
estimates of effort, or artificially pad their estimates

— Stakeholders benefit from a more accurate and honest I
understanding of future progress making their decisions more
informed .

= The fixed sizing scale is simple and easy to understand by all
stakeholders

— Areas of high risk are easy to identify as they manifest themselves
as large Stories

- Risk can be tackled by prioritising and splitting large Stories

© Jamie Allsop 2008

Benefit;: Waste Is minimised and Bottle-

necks can be detected

= Minimising waste is an important underlying principle of Agile
development

- Expensive development effort is only used when there is a definite
prioritised need for the work

- |If product direction changes at most an iteration's period of work is
affected

= |tis possible to detect and quantify Resource Bottle-necks

- Bottle-necks are visible as story point completion rate drops to
near zero

— Potential bottle-necks can manifest themselves by observing
falling rate averages or sudden increases in the total amount of
prioritised User Stories

© Jamie Allsop 2008

Benefit: Stakeholders Can‘always see

who benefit§ from work done

= The product is described in terms of User Stories and Use
Cases, both of which always identify at least one User

= User Stories provide a uniform method of capturing both
functional and non-functional (constraints) requirements

- This makes it easier for stakeholders to prioritise business value
need

— Ticket Issues can be traced back to promised business value

= The product is described in a language that the customer
understands

= Development learn to view the product from User perspectives,
Improving domain understanding

© Jamie Allsop 2008

A Brief Prescription for Agility — As a

Team get th‘e basics in place

= Start with the basic framework
- Choose a fixed iteration length

« Larger teams favour shorter iterations

 Try not to have iterations longer than 3 weeks to keep expectations
in check

 Include a planning, development and evaluation phase for each
iteration

- ldentify a core set of dependency ordered, relative sized User
Stories

 Make sure you have enough to address the most needed work and
sufficient for a couple of iterations

* You can then get started into an iteration and continue to grow the
Story list in subsequent planning and evaluation phases

- Put in place mechanisms to evaluate when Stories are DONE

e Such as automated builds which runs tests

© Jamie Allsop 2008

Understand how the Methbdology will

interface with the Organisation

= Typically when a team becomes Agile it doesn't have any
control over the rest of the organisation

= An advantage of Agile methodologies is that progress indicators
are produced as a side-effect of the methodology

- However if the organisation cannot effectively consume those
indicators it will be hard gain value from them

= Spend time understanding the interfaces within your
organisation so that you can satisfy the need for progress
information

- Where possible generate this automatically from the core
information gathered as a side-effect of the methodology

- Where possible discourage use of 'dead' documents

- Where possible encourage use of centralised 'living'
documentation, for example on a Wiki

© Jamie Allsop 2008

Supporting Tools

¥

= The primary purpose of most tools in Agile development is
either to

— |Increase communication bandwidth

- Minimise overhead for capturing and sharing knowledge

- Facilitate timely communication of progress to provide good
stakeholder visibility

= Typical tools used are
- Email (and Newsgroups)
- Instant Messaging and Web meetings
- Wikis and Web-pages in general
- Ticket Systems
— Source Control Management tools

- Automated Tests and Builds with result reporting

© Jamie Allsop 2008

Typical Tool Use in Agile D“evelopment

User Storigs to Milestones

= User Stories
- Basically a Special kind of Issue (Ticket System)
- Must be editable with rich content (Wiki)
— Tickets can be raised against User Stories

= Use Cases

- Template based for ease of completion and Editable (Wiki, Ticket
System)

= Milestones

- Should be automatically updated as Stories become Done (Wiki,
Trac, Script Driven Web-page or similar)

- Must be visible to Stakeholders (\Web-page)

- Must be clear — this is the main focus for understanding progress

© Jamie Allsop 2008

Typical Tools for Planning,“ Evaluation

and Evgrything Else

= Release Planning

- May need to capture dependencies in a graphical form to ease
understanding (Graphviz, Freemind)

= [teration Planning

- Must have a scratch pad for intent and to capture commitment
(Wiki)
- Links to User Stories (Wiki)
= |teration Evaluation
— Should communicate a summary of what was achieved (Wiki)

- Should have place to capture the outcome of the Retrospective
(Wiki)

= Communicate however you can, but always use lowest
common bandwidth medium in a group setting.

© Jamie Allsop 2008

Finally — the Popular Perspective

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

© Scott Adams, Inc./Dist. by UFS,

scottadama ® solcom

www.dilbert.com

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

Inc.

2697 ©2007 Scont Adama, Inc./Dist. by UFS, inc.

NAME.

™ GLA
%T H(;:\Lﬁ E WAS YOUR

THAT
TRAINING.

WE NEED USE
THREE MORE AGILE
PROGRAM—~ PROGRAM —
MERS. MING
METHODS.

s oftadsme B acl com

www. dilbert.com

AGILE PROGRAMMING
DOESN'T JUST MEAN
DOING MORE WORK
WITH FEWER PEOPLE.

% o200 Scott Adams, Ing DHet. by UFS, inc

.r*‘;?-’}
L

[
4

FIND ME SOME
WORDS THAT DO
MEAN THAT AND

ASK AGAIN.

© Scott Adams, Inc./Dist. by UFS, Inc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

