

© Jamie Allsop 2008

Foundations of Agile Development

Some Questions:

What are the Foundations of Agile Development?
What benefits does Agile Development bring?

So how to become Agile?

Reality Check:

Agile Development is not a Silver Bullet

© Jamie Allsop 2008

Overview of Topics

 Typical Development
– And some of its problems

 Agile Development
– Values and Principles

– Users and Stories

– Time-Boxing, Relative Sizing and Progress

– Planning and Adaptability

– User Stories

– Use Cases

 Benefits of Agile Development
 Brief Prescription for Agile Development
 Supporting Tools

© Jamie Allsop 2008

Typical Development

 Inputs to development are usually
– Product Requirements Documents from marketing and business

development (new development)

– Ticket Issues from customers (continuing development)

 Product Requirements Documents
– full product specification generated up front

– used by development to create a Software Requirements
Document

 Transform Requirements Documents into a Development Plan
– develop a Gantt chart and Spreadsheets to provide an estimate of

the work involved, typically covering a full release

– progress measured by Task Completion per Resource

 Ticket Issues generally become deviation points for the plan

© Jamie Allsop 2008

Problems with Typical Development

 Here are some, but there are more...
– Progress is measured by Task Completion

● Tasks are hard to trace to business value
● Emphasis is on following a plan

– The Plan is always out-of-date - changing it is heavyweight
● Very difficult to assess where we are NOW

– Often we can tell if we are late, but it is almost impossible to determine
how late. Our estimate of how late we are only gets better as we get
closer to the Plan deadline. Often too late.

● Difficult to communicate progress to Stakeholders

– Incremental delivery of Product is hard as Tasks are not aligned
with User Value

– Incoming Issues deflect and interrupt the Plan – poor integration

– Emphasis on where we would like to be: not where we are, or
where we could be. Basically “wishful planning”

© Jamie Allsop 2008

What is Agile Development?

 Agile Development is development that supports the Agile Value
System

 The Agile Value System is based on a set of Agile Principles
 In essence Agile Development seeks to cope Deterministically

with Change
– Progress is measured against business value delivered to the

customer

– Change is welcomed as a sign of better understanding of the
business need

– Effort is only spent as needed to deliver business value -
minimising effort wastage in the face of change

– Past observed progress is used to predict future progress

 Emphasis is on delivering Business Value in a sustainable way

© Jamie Allsop 2008

Agile Value System
Left valued more than Right

 Individuals and interactions
– over processes and tools

 Working software
– over comprehensive documentation

 Customer Collaboration
– over contract negotiation

 Responding to change
– over following a plan

© Jamie Allsop 2008

Agile Principles

 The Value System is based on the following principles:
– Early and continuous delivery of valuable software

– Welcome changing requirements

– Deliver working software frequently

– Business people and developers work together

– Trust motivated individuals

– Working software is the primary measure of progress

– Promote sustainable development

– Technical excellence and good design

– Simplicity is essential

– Self-organising teams

– Team reflection and adjustment

© Jamie Allsop 2008

Who is the Customer?

 Basically anyone who is a stakeholder in the project who will
use the project
– The development team itself can be a Product Support customer

 Ideally there will be a representative cross-section of real
customers
– Identifying actual customers is not always possible

– In some cases we must use customer proxies from business
development, marketing, sales, support and QA

– Sometimes we need several customer proxies to represent
different customer classes

 Customers and Users are generally the same
– Typically the term customer is used in the broader sense to

represent stakeholders who will be charged for using the system

© Jamie Allsop 2008

In Agile Development the Product is
Described as User Stories

 User Stories are akin to Features and describe the System from
the user’s perspective

 Capture Functional and Non-Functional requirements
uniformly

 User Stories are Sized Relatively
using a fixed, non-linear scale:
1, 3, 5, 8, 13, 20, 40, 100

 Dependencies are noted
 User Stories typically

have an End User who
consumes an interaction
from the system

 Customer can understand
User Stories

As System
Admin I can add
…

As End User I
can save …

As End User I
can edit…

As User Admin
I can …

As End User I
can…

As End User I
can…

As System
Admin I can …

As End User I
can…

Darker stories are larger

© Jamie Allsop 2008

Identify a Finite, but evolving, set of End
Users

 Careful identification of User classes is an important skill
requiring stakeholder input

 A shared understanding of the who the Users of a system are is
central to communicating effectively the User Stories with the
Customer.

 Some typical users are
– SystemAdmin

– SecurityAdmin

– EndUser

– ProductSupport

 As understanding of a product improves User classes can be
split or refined as appropriate

 Some End Users will have very specific business domain roles

© Jamie Allsop 2008

Sample Users

 Here is a table of users identified for a real system
– You can start with EndUser then split off and add more specialised

types of user, eventually relegating EndUser to a non-priveleged
user

– In some cases the system will be a valid user

© Jamie Allsop 2008

Work in Fixed, Time-Boxed
Development Cycles

 One or more User Stories are developed in each iteration
 Frequent delivery

– 1-4 week Iterations, 1-4 Iterations per Milestone.

– 1-4 Milestones per GA Release

 Time-boxed development
– Iterations last a predefined length of time

– Team concentrates on iteration goals – the selected User Stories

– Team observes development rate based on Story completion

– Allows computation of effort needed for remaining Stories

 Focus mainly on the next most important thing
– From the customer’s perspective

© Jamie Allsop 2008

Plan to Provide Value

 Plan to deliver business features – the User Stories
– Accomplishment means integration, test and documentation

– QA can be done on a per-Story basis

 The Customer is involved in Planning and Evaluating every
Iteration

 Plan at different levels – and update continuously
– Release planning – between every iteration

– Iteration planning – for each iteration

– Daily Planning – daily synchronisation in a short stand-up

 Detailed planning only for the next steps
– Typically the next iteration

 Each iteration finishes with working software

© Jamie Allsop 2008

Measuring Progress and Time

 We use the Relative Size of each User Story to derive
estimates for duration.

 This is based on Observed progress during iterations.
– How any points worth of User Stories are we likely to complete in

an iteration

 The Release Plans can be continually updated.
 Different planning levels have different levels of confidence.

– Estimates for completion of larger milestones have greater error

 Cone of uncertainty
 Estimates should be

provided as a
Date Range.

160 %

60 %

100 %

Knowledge, Iterations Observed

© Jamie Allsop 2008

Strategy

Portfolio

Product

Product is composed of Releases

Milestone 2 is GA Release 1 Milestone 3Milestone 1

ReleaseIteration 2 Iteration 3 Iteration 4Iteration 1

Iteration

Task Time

Design X 1 hour

Implement X 4 hours

Implement Y 24 hours

Meetings 1 hour

Automate Tests 16 hours

Task Active Done

Design X

Implement X

Implement Y

Daily

Different Levels of Planning

The 'Planning Onion' shows
how the different levels of

planning are layered

© Jamie Allsop 2008

Understanding Progress

 Iterations deliver User Stories – product value increases
incrementally
– Release Progress is measured by User Stories Completed

– Progress within an Iteration is measured by Task Completion
● Purpose is to detect extreme deviations or critical problems

 Focus is on
– What Still Needs to be Done, not time passed

– Continually updating our plans to reflect what is currently the Most
Important Value for the Customer

● not protecting our original plan against change

 Release Progress is known accurately on each iteration
 Visibility on Progress is known NOW
 Direction of Focus can change each Iteration

© Jamie Allsop 2008

Agile Methodologies Themselves Adapt

 Each iteration we ask the customer how we are doing
 Each Iteration we evaluate how things are going

– Iteration Retrospectives are a vital feedback loop in an Agile
methodology and should never be skipped

 We can feedback useful changes into the next iteration
 Changes should be given time to evaluate their effect on the

methodology
 Typically only make one change per iteration
 Try to allow each change at least 3 iterations to evaluate it fairly

– Otherwise you risk oscillating

© Jamie Allsop 2008

Elements of an Agile Methodology

 Start
– New Products

● Incubate the Ideas
● Initiate the First Set of User Stories and Milestones

– Existing Products
● Consolidate an Initial Set of Stories for a couple of Iterations

 Iterate in Fixed Time Boxes
– Iteration Planning – Choose User Stories

– Iteration Development – Complete User Stories

– Iteration Evaluation – Update User Stories

– Release Planning – Update Milestones

 Measure User Story Completion per Iteration to estimate future
progress

© Jamie Allsop 2008

IssuesIssuesIssues RFERsRFERsPOs

User StoryUser StoryUser StoryMnM1 M2 M3 GA

User Stories

YES

GA Release

Software
& Doc

GA
Notes

NO

ITERATION PLANNING

1-5 days/hoursCustomer, Team
and other

Stakeholders
scope first GA
release based on

initial User Stories
Prioritised into

Milestone Buckets.

1 week

NO Planned
GA

Release. Is
it ready?

1-2 days

 GA Release
RETROSPECTIVE.

Evaluation of lessons
learned. Feedback

changes to methodology.

1-2 days/1-4 hours

Iteration
RETROSPECTIVE.

Evaluate Methodology
and update or change

as appropriate.

Task List

 ITERATE

GA ITERATION EVALUATION

1-2 days

Stakeholders
update
overall

marketing
architecture.

1-2 days

Customer and Team update User
Stories: Add new Stories; Split Large

Stories; Re-open Existing Stories.
Update Milestones and Priorities.

Calculate Milestone Time Estimates.

Story 1

Story 6

Story 3

Story 12

Story 17
Story 2

Story 7

Story 13

Story 14

Story 9

Story 4

Story 16
Story 8

Story 15

Story 5
Story 10

Story 11

Story 23

Story 25

Story 12

Story 21

Story 18
Story 22

Story 24
Story 20

Story 19

Relatively Sized
User Stories

Tacit
Knowledge

Shared
Vision

M1 M2 M3 Mn

Team
updates
overall

technical
architecture.

Team
identifies
Tasks from
Stories and
Use Cases.

Can
commit?

1 week

Initial User Story
list generated from

Customers with
Team and other

Stakeholder help.
Identify

Dependencies.
Relatively Size
User Stories.

Customer
and Team

refine
Stories to
Use Cases
and Test
Cases.

Use
Cases

Test
Cases

PLANNED
GA RELEASE

3 – 9
Iterations

IssuesIssuesIssues RFERsRFERsPOs

User StoryUser StoryUser Story

1-2 days/1-4 hours

MnM1 M2 M3 GA

User Stories

Software
& Doc

Working
Release

ITERATION
DEVELOPMENT

Design
 Write Tests

Code
Refactor
User Doc

Acceptance Tests

2 weeks/10 daysTask List

Use
Cases

Test
Cases

YES

INITIATION

 START

INCUBATION

??? weeks

Idea/Opportunity.
Key Problems to Solve.

User Needs.
Market Analysis.

Product and Loss Analysis.
Business Constraints. Customer

Prioritises
Stories for

Iteration. Team
estimates if

they can commit.

User Stories

Update
Status

1 d
ay

ITERATION EVALUATION

1-2 days/hours

Customer and Team update User
Stories: Add new Stories; Split Large

Stories; Re-open Existing Stories.
Update Milestones and Priorities.

Calculate Milestone Time Estimates.

Stakeholders
update
overall

marketing
architecture.

1-2 days/hours

Customer and Team
review release.

1-3 days

MnM1 M2 M3 GA

User Stories

Customer, Team and
Stakeholders scope

next GA release.
Update Milestones.
Calculate Times.

© Jamie Allsop 2008

Iteration Planning

 Adopt a workflow with development entry criteria to help guide
the planning, for example:

ITERATION PLANNING

Customer
Prioritises
Stories for

Iteration. Team
estimates if they

can commit.

Customer
and Team

refine
Stories to
Use Cases
and Test
Cases.

Team updates
overall

technical
architecture.

Use
Cases

Task ListUser Stories

Team
identifies

Tasks from
Stories and
Use Cases.

Can
commit?

Test
Cases

NO

YES
ITERATION

DEVELOPMENT

 Use evolving templates to help drive meetings and the expected
outcomes
– Wiki pages are great for this

© Jamie Allsop 2008

Iteration Evaluation

 As with iteration planning have a workflow to help guide the
evaluation phase

1-4 hours

Iteration
RETROSPECTIVE.

Evaluate Methodology
and update or change

as appropriate.

IssuesIssuesIssues RFERsRFERsPOs

User StoryUser StoryUser Story

1-4 hours

MnM1 M2 M3 GA

User Stories

1-2 hours

Customer and Team update User
Stories: Add new Stories; Split Large

Stories; Re-open Existing Stories.
Update Milestones and Priorities.

Calculate Milestone Time Estimates.

Stakeholders
update overall

marketing
architecture.

1-2 hours

Customer and Team
review release.

Software
& Doc

Working
Release

ITERATION
DEVELOPMENT

ITERATION EVALUATION

© Jamie Allsop 2008

The Release Plan is the Roadmap

 Estimated completion date is a Calculated Date Range
 Estimates change as stories are completed, time progresses

and the rate of completion changes

© Jamie Allsop 2008

Story Points per Iteration is based on a
Moving Average

 It is possible to use more than one average to offer both long
and short terms estimates of progress

© Jamie Allsop 2008

Milestones are Composed of Stories

 Not all milestones are GA Releases
 Using Named Milestones makes it easy to insert new ones

© Jamie Allsop 2008

Story Completion provides an
Immediate Indicator of Progress

© Jamie Allsop 2008

User Story Relative Sizing Revisited

 User Stories are Sized Relatively using a fixed non-linear scale,
for example,
1, 3, 5, 8, 13, 20, 40, 100

 Only User Stories below a certain relative size may be added to
an iteration,
– For a 2 week iteration we might allow, 1, 3, 5, 8, 13

– For a 1 week iteration we might allow, 1, 3, 5

 Stories larger than this must be split into 2 or more smaller
Stories.

 Splitting Stories is not so easy as it requires careful thought.
 A important side-effect is a better understanding.

© Jamie Allsop 2008

Story Driven Release planning 30% done

S1 S2 S3

Task Driven Release planning
30% done

•some components missing
•little user value

T1

T2
T3

Recap: Split User Stories to fit in an
Iteration

 This ensures we always focus on customer value
– Customers get slices of the cake, not a selection of the

ingredients

– Remember User Stories grouped into Milestones is the Release
Plan

© Jamie Allsop 2008

User Story Relative Sizing Revisited
Again

 Sizing is Relative (that is Comparative to other Stories)
– Relative sizing can be anchored mentally using time or simple

descriptive terms

 The only important consideration is that the Relative anchoring
of size remains consistent.

 In general people give consistent appraisals of Relative Size.
– This helps protect against 'compensated' estimates

– Let the Points per Iteration adjust the expected development rate,
not some artificially modified estimate

 The fixed, finite element, sizing scale helps maintain
consistency and reduces the temptation to try to estimate sizing
more accurately than is possible.
– Larger Stories are given a larger variation in size.

© Jamie Allsop 2008

User Story Relative Sizing Anchors

 Typical Relative size mental anchors that can help describe the
relative size of a User Story

Relative
Point Size

Description Time
(be careful with this one!)

Gargantuan/Elephantine

Massive/Colossal

Huge

Large

Medium

Modest

Small

Tiny

100

1

3

5

8

13

20

40

More than a quarter

Up to a quarter

less than a month

Less than 2 weeks

More than a week

Less than a week

2 or 3 days of work

Less than a day

© Jamie Allsop 2008

Understanding Progress of a User Story
– Done or Not Done?

 Stories can be either NOT DONE
– Not Yet Assigned for Completion

– Candidate for Completion in this Iteration

– Selected for Completion in this Iteration

 or DONE (Done Done, REALLY Done)
 A Story is DONE when either,

– It is Test Complete (there is no relevant doc or use case change
so a tested implementation is sufficient to be DONE), or,

– It is Acceptance Complete (test cases all pass, documentation is
available, and business value has been verified)

 Only DONE Stories contribute to Milestone progress

© Jamie Allsop 2008

User Story Completion States that
identify when a Story is DONE

 A Story is either:
– Test Complete (might mean DONE)

● An implementation and associated tests have been developed for
the story

– Doc Complete
● Where appropriate User Documentation has been completed to

describe the Story for the User. If Doc is required Acceptance
Completion is almost always needed.

– Acceptance Complete (might mean DONE)
● The Story is assessed as DONE or not, based on the

implementation tests, User Documentation, Test Cases (derived from
the Use Cases) and Story notes, especially the completion
statement. This typically done by QA.

© Jamie Allsop 2008

User Story Detail Grows as it becomes
a priority: Initially Not Started

 A key principle of Agile Development is to not pay for what you
don't use

 When User Stories are first identified they generally consist of
only the Story itself, Relative Size and Dependency notes

 As User Story priority increases we spend more effort
elaborating them – lightweight in the beginning

 We are as lightweight as we can be for as long as we can be

© Jamie Allsop 2008

User Story Info: Iteration Candidate

 Pre-Iteration Details:
– Completion Statement

– Clarifying Use Cases (optional)

– Additional Context (optional)

© Jamie Allsop 2008

User Story Info: Current Iteration

 Iteration Development:
– Task List (as required)

– Notes (as required)

© Jamie Allsop 2008

User Story Info: DONE

 Post-Iteration Details:
– Completion Details (Addition TCOM and QA notes)

 Emphasis is on providing only as much information as required
to allow adequate verification of completion

© Jamie Allsop 2008

The relationship between User Stories
and Use Cases

 Use Cases compliment User Stories
– A Use Case documents a Goal driven Functional Scenario

– A User Story typically identifies one step in a Scenario

– A User Story can also identify a non-functional constraint on a
system from a User perspective

 In addition to the Main Success Scenario a Use Case usually
identifies one or more failure scenarios
– provides a good foundation for Test Cases

– provides the context in which a User Story is enacted

 Use Cases and User Stories are loosely coupled
– A Use Case can provide the context for several User Stories

– A User Story can imply several Use Cases

© Jamie Allsop 2008

Functional and Non-Functional User
Stories

 Functional User Stories typically describe something a User can
do

 Non-Functional User Stories typically describe something a
User will experience
– Predictable scalability

– Predictable stability

– Other 'ilities

– Often these are User-centric ways of capturing constraints on the
system

– Sometimes the System itself will be a User

 Emphasis is on which User will benefit from the non-functional
requirement, or which User is most affected by the constraint

© Jamie Allsop 2008

Elements of a Use Case

 A Use Case is a textual artifact that specifically examines one or
more scenarios from a User's perspective in the User's attempt
to accomplish some specified goal.

 A Use Case
– Exists in a certain Design Scope

– Is enacted by the identified User

– The User is trying to achieve a Goal

– To achieve the Goal the User must complete a Main Success
Scenario

– Certain Pre-Conditions may be required before starting

– Completion of the scenario may have Guarantees

– There may be extension scenarios for deviations

© Jamie Allsop 2008

A Use Case Template

 The template shown is a
compromise between brevity
and value

 The Use Case Summary Title
(USE CASE NAME) captures
the essence of the Use Case

 The Main Success Scenario
will have at least 2 steps but
not too many (say 3 to 10)

 Extensions refer to specific
steps in the Main Success
Scenario
– More than four levels deep

here implies another Use
Case

© Jamie Allsop 2008

Choose a Use Case Template and use
it consistently

 Scope and Level are
important so are also
represented with icons for
quick browsing

 The Primary Actor will be one
of our previously identified
users, bridging the gap
between User Stories and
Use Cases

 Technology and Data
Variations are used to detail
'how' something is different
– Extensions capture 'what' is

different from the Main
Success Scenario

Goal in Context

Scope

Level

Primary Actor

Stakeholders & Interests

Preconditions

Minimal Guarantee

Success Guarantees

Trigger

Main Success Scenario

1

n

Extensions

1a.

Na.

1a1.

USE CASE XXX Use Case Summary Title
Design
Scope

Goal
Level

Technology & Data Variations

1

n

Comments

© Jamie Allsop 2008

Use Cases have a Design Scope

 Identifying a design scope helps remove ambiguity
– Business Use Cases for the Organisation/Enterprise

● We are discussing the behaviour of the entire organization or
enterprise in delivering the goal of the primary actor

– Black box if we are treating the organisation as a black box
– White box if we are discussing departments

– System
● We are discussing the behaviour of the system

we are building
– Black box if we treat the system as a black box
– White box if we reveal details of the internals

– Sub-system
● We are discussing a sub-system or component

of the system we are building

© Jamie Allsop 2008

Use Cases have a User Goal Level

 Every Use Case has a User Goal Level
– We identify 5 goal levels for Use Cases

 Higher level goals can be unfolded or split into one or more
lower level goals
– Higher level goals provide context for lower

level ones

 User Level Goals are the most important and
most energy should be spent trying to detect
these use cases
– Subfunction Goals should only be added if they

are needed to remove ambiguity

 The Goal Level icons use a Sky-SeaLevel-Sea
metaphor to illustrate that most use cases will
appear at sea level. There is only one sea level.

© Jamie Allsop 2008

Use Case Goal Levels: Pictorially

 Use Case goals levels reflect the different usage levels in a
system

© Jamie Allsop 2008

Use Case Goal Levels: Emphasis
changes as level changes

 Higher level goals address Why, lower level goals address How
– To move down a level ask How?

– To move up a level ask Why?

© Jamie Allsop 2008

Use Cases are UI Agnostic

 Emphasis is on WHAT is achieved, not the mechanics of HOW
it is achieved

 User Documentation describes the 'how'
 Test Cases for User Interactions can be written in two phases

– First phase ensures the Use Case path is clear

– Second phase adds details based on User Doc

 Acceptance tests can validate both the UI and the User
Documentation independently

 Use Cases are therefore very useful when used to capture
complex User Interactions

© Jamie Allsop 2008

Use Case Summary and Sample

 The Use Case clearly and
succinctly provides an
interaction capability promise
– Preconditions and

Guarantees are important

– The Main Success Scenario
is not overly long

– There is no UI information
● There shouldn't be. Such

detail depends on the
implementation

– The Extensions can be
implemented and tested
separately

 Use Cases are Iteration tools

© Jamie Allsop 2008

Benefit: Roadmap and Progress
Reporting are Side-Effects

 In a typical waterfall development scenario the artifacts that are
used to estimate and track progress are generated explicitly
– Conscious effort is required to produce these

– Conscious effort is required keep these up-to-date

– Often the overhead is so large one person in the team ends up
doing this work almost exclusively

– If all of the above is overcome the accuracy of the data is poor
and largely based on intuition

 In Agile these artifacts are generated automatically as a side-
effect of the methodology
– The data produced is as accurate as it can be, as it is based on

known current progress and observed previous progress

© Jamie Allsop 2008

Benefit: It is possible to 'try' different
scenarios to understand the effect

 Expected progress is based on observed progress. We can
therefore experiment with alternate Roadmaps to see the
expected progress for each

 It is also possible to create artificial scenarios that may impact
the Roadmap and observe the effect they may have
– For example estimate the effect of an increased support workload

by modifying the rate of story point completion

 Stakeholders can therefore make considered decisions
regarding possible Roadmap variations

© Jamie Allsop 2008

Benefit: The Time Estimate is
decoupled from the Effort Estimate

 Estimates of completion time is calculated based on observed
progress, not directly from developers' time estimates
– Developers are no longer under pressure to give overly optimistic

estimates of effort, or artificially pad their estimates

– Stakeholders benefit from a more accurate and honest
understanding of future progress making their decisions more
informed

 The fixed sizing scale is simple and easy to understand by all
stakeholders
– Areas of high risk are easy to identify as they manifest themselves

as large Stories

– Risk can be tackled by prioritising and splitting large Stories

© Jamie Allsop 2008

Benefit: Waste is minimised and Bottle-
necks can be detected

 Minimising waste is an important underlying principle of Agile
development
– Expensive development effort is only used when there is a definite

prioritised need for the work

– If product direction changes at most an iteration's period of work is
affected

 It is possible to detect and quantify Resource Bottle-necks
– Bottle-necks are visible as story point completion rate drops to

near zero

– Potential bottle-necks can manifest themselves by observing
falling rate averages or sudden increases in the total amount of
prioritised User Stories

© Jamie Allsop 2008

Benefit: Stakeholders can always see
who benefits from work done

 The product is described in terms of User Stories and Use
Cases, both of which always identify at least one User

 User Stories provide a uniform method of capturing both
functional and non-functional (constraints) requirements
– This makes it easier for stakeholders to prioritise business value

need

– Ticket Issues can be traced back to promised business value

 The product is described in a language that the customer
understands

 Development learn to view the product from User perspectives,
improving domain understanding

© Jamie Allsop 2008

A Brief Prescription for Agility – As a
Team get the basics in place

 Start with the basic framework
– Choose a fixed iteration length

● Larger teams favour shorter iterations
● Try not to have iterations longer than 3 weeks to keep expectations

in check
● Include a planning, development and evaluation phase for each

iteration

– Identify a core set of dependency ordered, relative sized User
Stories

● Make sure you have enough to address the most needed work and
sufficient for a couple of iterations

● You can then get started into an iteration and continue to grow the
Story list in subsequent planning and evaluation phases

– Put in place mechanisms to evaluate when Stories are DONE
● Such as automated builds which runs tests

© Jamie Allsop 2008

Understand how the Methodology will
interface with the Organisation

 Typically when a team becomes Agile it doesn't have any
control over the rest of the organisation

 An advantage of Agile methodologies is that progress indicators
are produced as a side-effect of the methodology
– However if the organisation cannot effectively consume those

indicators it will be hard gain value from them

 Spend time understanding the interfaces within your
organisation so that you can satisfy the need for progress
information
– Where possible generate this automatically from the core

information gathered as a side-effect of the methodology

– Where possible discourage use of 'dead' documents

– Where possible encourage use of centralised 'living'
documentation, for example on a Wiki

© Jamie Allsop 2008

Supporting Tools

 The primary purpose of most tools in Agile development is
either to
– Increase communication bandwidth

– Minimise overhead for capturing and sharing knowledge

– Facilitate timely communication of progress to provide good
stakeholder visibility

 Typical tools used are
– Email (and Newsgroups)

– Instant Messaging and Web meetings

– Wikis and Web-pages in general

– Ticket Systems

– Source Control Management tools

– Automated Tests and Builds with result reporting

© Jamie Allsop 2008

Typical Tool Use in Agile Development
User Stories to Milestones

 User Stories
– Basically a Special kind of Issue (Ticket System)

– Must be editable with rich content (Wiki)

– Tickets can be raised against User Stories

 Use Cases
– Template based for ease of completion and Editable (Wiki, Ticket

System)

 Milestones
– Should be automatically updated as Stories become Done (Wiki,

Trac, Script Driven Web-page or similar)

– Must be visible to Stakeholders (Web-page)

– Must be clear – this is the main focus for understanding progress

© Jamie Allsop 2008

Typical Tools for Planning, Evaluation
and Everything Else

 Release Planning
– May need to capture dependencies in a graphical form to ease

understanding (Graphviz, Freemind)

 Iteration Planning
– Must have a scratch pad for intent and to capture commitment

(Wiki)

– Links to User Stories (Wiki)

 Iteration Evaluation
– Should communicate a summary of what was achieved (Wiki)

– Should have place to capture the outcome of the Retrospective
(Wiki)

 Communicate however you can, but always use lowest
common bandwidth medium in a group setting.

© Jamie Allsop 2008

Finally – the Popular Perspective

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

